
Newton-Krylov-FAC Methods:

Infrastructure, Algorithms, and Applications

Michael Pernice1 Richard Hornung2

Computer and Computational Sciences Division Center for Applied Scientific Computing

Los Alamos National Laboratory Lawrence Livermore National Laboratory

Los Alamos, NM 87544 Livermore, CA 94551

pernice@lanl.gov hornung@llnl.gov

Seventh Copper Mountain Conference on Iterative Methods
Copper Mountain, Colorado

March 24–29, 2002

1This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under contract
W-7405-ENG-36. Los Alamos National Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
LAUR 02-0336

2This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore
National Laboratory under contract W-7405-ENG-48.



1

Outline

• Motivation

• Structured adaptive mesh refinement

• Inexact Newton methods

• Software infrastructure

• FAC preconditioning

• Numerical examples



2

Motivation I: Why Implicit Methods?

• Operator-splitting and/or time-lagging are often used for time-dependent nonlinear

problems.

I Operator-splitting can be used to eliminate nonlinearities, relieve stability constraints, or

reduce problem dimensions.

I Time-lagging techniques use previous time values for some variables to generate

linear(ized) problems for other variables.

• Accuracy can be compromised.

I Nonlinearities not fully converged.

I Different variables at different time levels introduces additional temporal errors.

• Prior work has shown that fully implicit approaches are not only practical, but can improve

accuracy at a lower cost.

I Time steps are determined solely by accuracy, not stability.

I Efficient solution of large-scale systems of nonlinear equations is the key.



3

Motivation II: Why Local Mesh Refinement?

5 10 15 20 25 30

5

10

15

20

25

30

Temperature

10 20 30 40 50 60

10

20

30

40

50

60

Vorticity

Nonlinear heat transfer Magnetohydrodynamics



4

Structured Adaptive Mesh Refinement

Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of

logically rectangular meshes.

• The mesh is organized as a hierarchy of nested refinement levels.

• Each refinement level defines a region of uniform resolution.

• Each refinement level is the union of logically rectangular patches.



5

Features of SAMR Calculations

• Problem formulation modified only at coarse/fine interfaces.

• Calculations organized primarily as operations on regular uniform grids.

• Inter-/intralevel operations transfer information between refinement levels and supply

boundary values for individual patches.

• Grids are generated dynamically by tagging cells on each level that need refinement and

grouping these cells into rectangular regions.



6

Issues to Address

• Handling discretization at coarse/fine interfaces.

• Solver engines.

I Packages generally are not designed to handle dynamic locally refined grids.

I Data structures and methods are not “SAMR-aware”.

• Preconditioning.

I Increased resolution should not come at the cost of slower convergence rates.

I Hierarchical approach facilitates development of preconditioners from simpler building

blocks.

• Generality, flexibility, and extensibility.

I “Best” methods for many problems still a topic for research.

I Transparent use of different nonlinear solution methods and/or packages.

I Accommodate a broad range of application requirements.



7

Jacobian-free Newton-Krylov Methods

The kth step of classical Newton’s method requires solution of the Newton equations:

F
′
(xk)sk = −F (xk).

With inexact Newton methods, we only approximately solve the Newton equations

‖F (xk) + F
′
(xk)sk‖ ≤ ηk‖F (xk)‖.

Krylov subspace methods provide a convenient way to determine sk, since they only need

matrix-vector products. The required Jacobian-vector products can be computed using finite

differences:

F
′
(xk)v ≈

F (xk + εv)− F (xk)

ε
.

Thus, there is no need to compute and store F ′(xk).



8

JFNK on SAMR grids

• Core JFNK implementation can be expressed in terms of vector kernel operations.

I Ideally, these are implemented directly on data represented on the SAMR mesh.

• Nonlinear residual calculation requires detailed knowledge of problem formulation on the

SAMR mesh.

I Ideally, these are implemented in terms of variables from the application.

• Preconditioning is most effective when it is tailored to the problem.

I Again, direct use of variables from the application is most desirable.

I Ideally, approaches that work well without local refinement should continue to work well

with local refinement

I Hierarchical methods can achieve convergence rates that are independent of the number

of refinement levels.



9

SAMRAI

SAMRAI is a research and development effort in LLNL/CASC that supports the use of SAMR

methods in multiphysics problems. It provides a flexible algorithmic framework to explore new

solution methods.

Features relevant to our concerns include:

• Variable management

I Supports development in terms of problem variables, independent of grid hierarchy.

• Vector facilities

I Provides a mechanism to group variables together and interact with solver packages.

• Data transfer facilities

I General and flexible means of moving data within the hierarchy.

I Either built-in interpolation operations or customized schemes can be used.

• Mesh generation

I Supports all aspects of dynamic regridding, including updating vector structures after

regridding.



10

Newton-Krylov Packages

• KINSOL

I Based on NKSOL.

I Implemented by Taylor and Hindmarsh at LLNL/CASC.

• SNES

I Part of the PETSc suite of solvers.

I Written by Balay, Curfman-McInness, Gropp and Smith at ANL/MCS.

• Many shared features:

I Jacobian-free methods;

I globalization based on linesearch backtracking;

I both static and dynamic choices for forcing terms;

I flexibility in choosing/updating the preconditioner;

I modular code organization in which the solver methods act on vector datatypes.



11

Interoperability

The design of KINSOL and SNES allows us to use an alternative vector representation and

data structure, as long as the required operations (dot, norm, axpy, ...) are available.

kins_AbstractVector

KINSOL_SAMRAIVector

petc_AbstractVector

PETSc_SAMRAIVector

PETSc Vec operations

SAMRAIVector*

KINSOL N_Vector operations

SAMRAIVector*

Weights

velocity weights
pressure weights

Operations

Pointer to Grid Hierarchy

SAMRAIVector

velocity
pressure

Variables

CellDataOps

FaceDataOps

With these interfaces, KINSOL or SNES can solve problems defined on SAMR grids.



12

Interfaces to Solvers and Implicit Timestepping

• Implicit time advancement manages timestepping. Applications provide:

I description of solution vector;

I initial conditions;

I time step computation;

I time step acceptance/rejection.

• A uniform interface that allows KINSOL and SNES to be used interchangeably is provided.

Applications provide:

I physical boundary conditions;

I nonlinear residual evaluation;

I methods to update Jacobian and compute Jacobian-vector products;

I methods to set up and apply a preconditioner;



13

Fast Adaptive Composite Grid Method

Procedure FAC(h, fh, uh):

If h = {hc}, solve Lhcuhc = fhc and return.

Set fh = Ihh(fh − Lhuh).
Solve Lhuh = fh.

Correct uh = uh + I
h
hu

h
.

Set u2h = 0, f2h = I
2h
h (fh − Lhuh).

u2h = FAC(2h, f2h, u2h).

Correct uh = uh + I
h
2hu

2h
.

Set fh = Ihh(fh − Lhuh).
Solve Lhuh = fh.

Correct uh = uh + I
h
hu

h
.



14

FAC Graphical Schematic



15

FAC Preconditioner Interface

Wide variation in application requirements makes development of a widely applicable FAC

preconditioner unlikely.

Observe:
1. the cycling strategy and associated data structures are independent of the application;

2. choice of the preconditioning operator and related methods (smoothing, level solves) are

application-specific.

Our approach reflects this division of labor:

• SAMRAI provides

I an implementation of FAC that separates scheduling of operations from their

implementation;

I additional components that satisfy commonly-encountered needs

� generic interpolation methods;

� level solvers based on hypre structured solvers.

• Applications provide all problem-specific aspects of the preconditioner:

I choice of preconditioning operator;

I smoothing on a level;

I solving on a level;

I interlevel transfers, including operator-dependent strategies.



16

Example: Unsteady Bratu Problem

ut = ∆u+ λeu on Ω = [0, 1]2

u = 0 at t = 0 and on ∂Ω

Locally Refined Grid

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9

L
in

ea
r 

It
er

at
io

n
s 

p
er

 t
im

es
te

p

�

Refinement Levels

64 x 64 Base Grid

8 timesteps
32 timesteps

128 timesteps

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9

C
P

U
 T

im
e 

p
er

 T
im

es
te

p

Refinement Levels

64 x 64 Base Grid

8 timesteps
32 timesteps

128 timesteps



17

Example: Discontinuous Diffusion Coefficients

ut = ∇ ·D∇u+ λeu on Ω = [0, 1]2

u = 0 at t = 0 and on ∂Ω

D =

 10−6 in [0, 1
2]2 ∪ [1

2, 1]2

1 otherwise

Locally Refined Grid

New Interpolation Scheme

0

500

1000

1500

2000

2500

0 1 2 3 4 5

L
in

ea
r 

It
er

at
io

n
s 

p
er

 T
im

es
te

p

�

Refinement Levels

16 x 16 Base Grid

Point Jacobi
FAC/Linear interpolation

FAC/Operator-dependent interpolation



18

Discretization



19

Outline of Nonlinear Residual Calculation

for each level in the hierarchy (finest to coarsest) {
for each patch in the level {

compute face-centered D;
compute face-centered fluxes D∇u;

adjust fluxes at coarse/fine interfaces;
adjust fluxes at physical boundaries;
}
}
for each level in the hierarchy (finest to coarsest) {

if not on the finest level {
copy saved fluxes from finer level to cell faces

at coarse/fine interfaces;
}
for each patch in the level {

complete evaluation of nonlinear residual,
including differencing of face fluxes;

}
}



20

Summary and Future Work

• Developed general and flexible infrastructure that can handle a variety of requirements:

I different nonlinear solver packages;

I operator-dependent prolongation;

I easily changed preconditioners.

• Demonstrated convergence rates independent of number of levels.

• Demonstrate software interoperability among SAMRAI, KINSOL, hypre and PETSc.

I Extensive software reuse allows greater focus on preconditioning.

• Current efforts focused on more realistic applications.

I Radiation diffusion.

I Resistive magnetohydrodynamics.

• Preconditioner requirements from applications spur current efforts to “populate the shelf”:

✓ simple Jacobi iteration for convection-diffusion operators;

✓ level solver and FAC solver for Poisson problems with Robin boundary conditions;

✓ level solver and FAC solver for convection-diffusion operators;

I level solver and FAC solver to handle tensor-valued diffusivity.

• Future work:

I focus on higher order implicit timestepping strategies;

I balancing temporal and spatial errors.


